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Maintenance of biosecurity and prevention of disease trans-
mission at NHP facilities involves intensive efforts to limit 
contact between primates and wildlife species. Rodent control, 
in particular, represents an ongoing challenge, especially for 
outdoor or indoor–outdoor facilities.22 Rodents can enter pri-
mate enclosures, consume and contaminate primate feed, and 
travel between enclosures and nearby sylvatic habitats. Primates 
with access to the outdoors are at increased risk of exposure to 
wildlife reservoirs of disease as well as to arthropod vectors of 
pathogens. The transmission of vector-borne and wildlife dis-
eases, including West Nile virus, tularemia, and leptospirosis, 
to NHP at primate facilities have been reported.14,37,40

Chagas disease is vector-borne, primarily affects humans 
and dogs, and is endemic throughout much of Latin America. 
Active transmission of the causative parasite, Trypanosoma cruzi, 
is increasingly recognized as an important public health issue 
in the southern United States. Entomologic surveillance has 
identified infected triatomine insect vectors (kissing bugs) across 
Texas.38 T. cruzi is maintained in nature by diverse species of 
wildlife, which serve as reservoirs.3 In areas where the vectors 
and parasite are found, Chagas disease has emerged as a major 
concern in NHP facilities. At least 14 reports of T. cruzi infection 
of NHP in the United States have been published, and all of 
the affected primates originated from southern states.10 Texas 
is home to several NHP facilities, including 1 of the 7 national 
primate research centers, and sporadic natural cases of Chagas 

disease in these NHP have been reported for decades in areas 
where kissing bugs are established.16,17,45 Although reports of 
infected NHP continue to increase with increased testing, few 
centers currently conduct routine comprehensive surveillance. 
Infection of NHP with T. cruzi can diminish their value as ap-
propriate models in research and can lead to health problems 
and death, resulting in significant scientific and economic losses. 
An undiagnosed infection in a NHP enrolled in a research study 
might potentially confound results of that study. Primates 
housed with outdoor access are at risk of encountering kissing 
bugs, and transmission can occur either through contamination 
of a bite wound or mucous membrane with feces from the bug 
after blood-feeding or through direct ingestion of the bug by the 
primates.35 Although the pathologic manifestations of Chagas 
disease in primates have been well described,1,5,46 the specific 
details of transmission and the role of wildlife reservoirs in these 
facilities are relatively unknown.

Identifying reservoirs is crucial to devising effective interven-
tions in a complex multihost system, such as Chagas disease.44 
Southern plains woodrats have repeatedly been implicated as 
important wildlife reservoirs of T. cruzi in the United States.6,12 
Other species of rodents, such as urban rats, have been inves-
tigated less thoroughly in this country, although they have 
been shown to harbor T. cruzi in highly endemic areas of 
Latin America.13,15,19,25,32,36 A recent survey of potential T. cruzi 
reservoirs in Texas found an infection prevalence of 34% in 
woodrats (Neotoma micropus), 75% in striped skunks (Mephitis 
mephitis), 60% in raccoons (Procyon lotor), and 18% in other 
rodents, including a single infected black or roof rat (R. rattus) 
and 2 house mice (Mus musculus).6 We investigated the pres-
ence and T. cruzi infection status in kissing bugs and roof rats, 
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included in each set of DNA extractions, and one or more wa-
ter negative controls were included as contamination controls 
in every PCR run. The DNA from T. cruzi Sylvio X10 clone 4 
(American Type Culture Collection, Manassas, VA), which is 
strain type TcI, served as a positive control. For the qPCR assay, 
positive and negative controls always gave expected results. 
For the nested PCR assay, when either the positive or nega-
tive control did not perform as expected, the entire plate was 
rerun, and the expected results were always obtained on the  
second attempt.

In addition, because of concerns about inhibition of PCR 
amplification, 10% of the negative rat samples (n = 15), selected 
across a variety of autolysis scores and dates of extraction, 
were ‘spiked’ with a low concentration (dilution, 1:106) of T. 
cruzi-positive control DNA and then analyzed by qPCR assay, 
which also included negative water controls and a positive 
control template DNA the same concentration as that of the 
spiked samples.

Vector surveillance. Active nighttime kissing-bug surveil-
lance was performed during 2 different visits to the facility in 
summer 2015 by using active searches and stationary white 
cloth sheets with dry ice and UV lights, methods which have 
successfully been used by us to collect kissing bugs in other 
areas across Texas. Surveillance was conducted between 2100 
and 2400 for one night during each visit by a 4-person team. 
Four stations with lights, sheets, and dry ice were set up in an 
area between a sylvatic habitat and a building housing rhesus 
macaques, where animals have seroconverted in years past 
(area B, Figure 1), and the stations and immediate vicinity were 
actively checked for bugs 3 to 4 times each hour. Between checks 
of the stations, team members patrolled the facility (areas A, B, 
and D; Figure 1) with flashlights to actively search walls and 
sidewalks for bugs. For passive surveillance, after providing 
an informational lecture about Chagas disease and distributing 
outreach materials at the start of the study period, we enlisted 
the help of facility personnel. In addition, during October, the 
facility’s pest control operators, acting on their own initiative, 
erected 4 ft × 4 ft white-glue boards under fluorescent lights 
nightly along the perimeter fence facing the sylvatic habitat 
and checked for insects each morning; these were not actively 
monitored overnight.

Analysis of sample size. We calculated the detectable level of 
parasite prevalence by using the equation for sample size to 
detect disease in a large (infinite) population: 

  

where n is the required sample size, q is 1 – the minimal expected 
prevalence, and α is 0.05 (for a 95% confidence level).9

Results
In total, 152 roof rats were collected over the 5-mo study 

period (Table 1). Rats were collected from 4 main areas spread 
across the facility (areas A through D), within and around cages 
of all the species of primates and in food storage areas (Figure 
1). Of the 152 rats collected, 69 (45.4%) were male, 75 (49.3%) 
were female, and the sex of 6 rats (6.9%) could not be deter-
mined. In addition, 16 of the 152 rats (18.4%) were classified 
as juveniles based on immaturity of external genitalia, and the 
rest were adults. Distribution of the degree of autolysis was as 
follows: score of 1 (minimal autolysis), 2.6%; 2, 23%; 3, 35.5%; 
4, 15.1%; and 5 (maximal autolysis), 23.7%. A total of 145 of the 
152 roof rats were tested; the remaining 7 carcasses were too 
autolyzed to determine sex and identify organs. Heart tissues 

the most abundant nuisance wildlife species, at a NHP facility 
with endemic Chagas disease.

Materials and Methods
NHP facility. The Southwest National Primate Research 

Center, located at the Texas Biomedical Research Institute 
(San Antonio, TX), houses approximately 2500 NHP, includ-
ing baboons, chimpanzees, and 2 species of macaques housed 
in indoor and outdoor cages, as well as common marmosets 
housed exclusively in indoor cages. The 200-acre property is 
partially surrounded by dense brushy vegetation with a small 
dry creek and is bordered by 3 major highways (Figure 1). 
Chagas disease was first detected in primates at this facility in 
198416 and has since been well-characterized.1,17,27,45,46 Roof rats 
(Rattus rattus; also known as ship rats, black rats, and house 
rats) are the most predominant rodent pest species identified 
by pest-control personnel at the facility.

Collection of rats. Through collaboration with the center’s 
pest-control service, we obtained roof rat carcasses that were 
collected as part of routine pest-control activities from May 
through July 2015 and October through November 2015. These 
rats were trapped in snap traps or were found dead, presumably 
after ingestion of poison baits from bait boxes within the facil-
ity. Rats were collected across the facility, which was divided 
into 4 general zones (Figure 1); the pest-control service focused 
their control efforts on areas with known high rat activity dur-
ing the study period. Rats were stored at –20 °C for as long as 
3 wk before transfer to Texas A&M University. We dissected 
the carcasses under Biosafety Level 2 laboratory conditions 
and recorded the species, sex, and postmortem condition. 
Postmortem condition was scored according to a 5-point scale, 
with a score of 1 representing minimal autolysis and progress-
ing to score of 5 for marked decomposition. Heart and clotted 
blood from within the ventricles were collected from animals 
in adequate postmortem condition. The use of these rats col-
lected for pest control was exempted from oversight by the 
IACUC at Texas A&M University and the Texas Biomedical  
Research Institute.

T. cruzi detection. The DNA was extracted (EZNA Tissue 
DNA Kit; Omega Bio-Tek, Norcross, GA) from heart and blood 
samples according to the manufacturer’s protocol but with an 
overnight lysis period. The extracted DNA was evaluated by 
using 2 independent PCR protocols. For the specific detection 
of T. cruzi, a 166-bp segment of the T. cruzi 195-bp repetitive 
satellite DNA was amplified by using a probe-based quantita-
tive PCR (qPCR) assay with Cruzi 1 and 2 primers and the 
6-carboxyfluorescein (FAM)-labeled probe Cruzi 3 as described34 
but with an initial denaturation time of 3 min. This assay has 
previously been shown to be a best-performing method in an 
international PCR study,39 and is sensitive and specific for all 
strain types of T. cruzi, including TcI, TcIV,39 and TcII,26 the 
strain types found in the United States. On the basis of internal 
laboratory validations, the cutoff for positive samples was deter-
mined to be a quantification cycle value of 32 (or less). We also 
performed a nested traditional PCR assay by using genus-level 
primers targeting a fragment of the 18S RNA-encoding gene 
of Trypanosoma spp.29 on each sample to allow for sequencing 
of positive results and potential detection of other species of 
trypanosomes. This primer set has been used to detect and 
characterize novel trypanosomes in a variety of species as well 
as other known trypanosomes including T. rangeli, T. dionisii, and 
all strain types of T. cruzi.7,24,30,31 DNA extractions, primary and 
secondary amplifications, and product analyses were performed 
in separate dedicated laboratory areas. A negative control was 
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Figure 1. Aerial photograph of the Southwest National Primate Research Center (San Antonio, TX), showing its sylvatic habitat and the sur-
rounding highway systems and bordering urban areas. Boxes represent unique sampling areas, and labels indicate the NHP species housed in 
each area.

Table 1. Demographics and T. cruzi PCR results of the of rats collected

n

Sex Site of collection

M F U A B C D U

May 22 10 10 2 0 3 1 12 6
June 51 24 23 4 0 12 1 35 3
July 20 7 13 0 2 5 0 12 1
October 39 15 22 2 0 13 0 26 0
November 20 13 7 0 0 3 0 17 0

Total 152 69 75 8 2 36 2 102 10

U, unknown
Regardless of date or site of sample collection, all samples were nega-
tive for T. cruzi.

were collected from all 145 tested rats, and clotted blood was  
collected from 61.

None of the 145 rat hearts or 61 blood samples tested was 
positive for T. cruzi according to conventional or qualitative 
PCR analysis. We were able to detect T. cruzi in all 15 of the 
spiked samples, and the quantification threshold values were 
approximately equal to that of the positive control containing 
the same concentration of T. cruzi DNA, whereas the negative 
control was negative; these findings demonstrate a lack of PCR 
inhibition. This sample size of 145 subjects affords the detection 
of a disease prevalence of 0.020 with a confidence level of 95%.

We did not collect any kissing bugs during a combined total 
of 7 h of vector surveillance activities between the 2 nights 
that we visited the facility in June and July, although several 
other species of bugs were observed. Facility personnel noted 
no kissing bugs onsite throughout the duration of the study, 
although 3 bugs of other species suspected to be kissing bugs 
were collected.

Discussion
Our inability to detect T. cruzi DNA in a sample of 145 rats 

indicates that the prevalence of T. cruzi infection in roof rats 
at this facility is low (less than 2%) or 0%, suggesting that 
this species may not serve as an important wildlife reservoir 
of T. cruzi at this time. Furthermore, neither our active vector 
surveillance nor passive surveillance by facility personnel and 
pest managers yielded any kissing bugs from the site, but our 
active surveillance efforts were limited, primarily due to security 
constraints by the facility. In contrast, our statewide kissing-
bug citizen submission program received hundreds of kissing 
bugs from the greater San Antonio area during the same time 
period.8,42 Although it seems most likely that the infection of 
adult primates at this facility results from contact with kissing 
bug vectors that our sampling failed to detect, alternative modes 
of transmission have not been investigated fully. For example, 
T. cruzi has been identified by PCR analysis in blood-sucking 
lice of the suborder Anoplura at the same primate facility, but 
transmission of the parasite by lice remains to be demonstrated.2
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increased vector control measures have had on the incidence of 
T. cruzi at this facility.

A reservoir is defined as one or more epidemiologically con-
nected populations or environments in which the pathogen 
can be maintained permanently and from which infection is 
transmitted to the defined target population.18 Therefore, given 
our results, roof rats are unlikely to serve as important as local 
reservoirs of T. cruzi at this facility. Increased bug and rodent 
control efforts may have reduced the frequency of transmis-
sion, but other mammals likely are serving as wild reservoirs 
of T. cruzi, given the facility’s location in San Antonio, a known 
hotspot for Chagas disease transmission, with a high number 
of infected vectors and canine and human cases.8,23,38,41,43 The 
facility is partially surrounded by a brushy area, with a dry 
creek on one side, and facility personnel have reported the 
presence of several mesomammals, including skunks, raccoons, 
opossums, and armadillos, all of which have been implicated 
as important reservoirs of T. cruzi in the United States,3,4,6 in 
addition to rabbits and squirrels, the reservoir competency of 
which is largely unknown. A primate facility in North Carolina 
isolated T. cruzi from raccoons on its property and from an 
opossum in the surrounding area after the detection of T. cruzi 
in a squirrel monkey.21 Multiple wild species as well as infected 
NHPs more likely serve as the local reservoirs of T. cruzi. Ef-
forts to characterize the reservoir community should include 
a multidisciplinary approach to data collection and analysis, 
with interventions that simultaneously answer questions about 
reservoir importance and provide direct benefits in control of 
the parasite.44 Future work should include expanded efforts to 
trap and test additional species of mammals, as well as increased 
efforts to confirm vector presence.
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